
1

If you do a web search for an introduction to APRS or Packet Radio, you will find a lot
of information.

Most of it is outdated.

Many of the “how to get started” guides tell you to spend a couple hundred $ on a
device from the 1980’s. The cost barrier scares most people away from trying
something new. Others might spend their money foolishly because they don’t know
about the other alternatives.

Tonight I will be talking a little bit about the history of the Packet Radio TNC and why
it’s no longer needed in most cases. You can do the same thing better and cheaper
by using free open source software.

Ham radio transceivers are designed for voice use not modems to send data. The
radios distort the signals, making it harder for the modems to perform well. I will
discuss how the signals are distorted and one technique to compensate for this
distortion.

2

Back before personal computers, his is how we sent text over ham radio.

Ask audience: How many of you have used one of these?

(??? and WN2BUB.)

3

Teletype machines were first developed in the 1930’s. As soon as they became
available on the surplus market, hams began to use them on the air.

It wasn’t difficult to get started. You just needed to add a simple modem which was
called a “terminal unit.”

It was not a efficient way to send text. First you would turn on the transmitter and it
would sit there transmitting a 100% duty cycle carrier. The frequency would shift by
170 Hz in a certain pattern for each key pressed. There was no error detection so
you would often see garbled messages.

It used a 5 bit code, commonly known as “baudot.” This allows only 32 different
combinations, not enough for all letters and digits. Some of the codes were for
control functions like carriage return, line feed, or bell. 26 of the codes were for
letters. A “shift” control code was used to get digits or special characters instead of
letters. If noise clobbered the shift or unshift code, you would see digits and special
characters instead of letters or vice versa.

4

In 1978 Canadian hams began experimenting with a much different method of
sending data over the air.

Rather than keeping the transmitter on and sending one character at a time, it was
sent in a short package (or “packet”).

Each transmission contained: (explain these …)

Source address. (e.g. ham callsign)
Destination address.
Optional repeater addresses.
Control / protocol bytes.
Information part.
Error checking (FCS, CRC).

[[Why is part of this in some other language? (Looks like German.)
This is what I found in the Power Point clip art collection and never went back to fix it.
]]

5

With RTTY we had only a simple modem to convert between digital data and audio
tones. When a key was pressed the corresponding code was sent immediately.

We now have some brains in between the terminal and modem to implement the
protocol used over the air.

This device is called a Terminal Node Controller (TNC).

The operator could take a while to compose a message but the complete message
gets sent in a short burst.

6

This new approach offers many advantages.

- Rather than tying up a radio channel with one person typing a character at a time,

a message could be sent in a short burst.

- Each packet contains information about where it came from and where it should
be going.

- This allows many people to share one frequency.

- Error detection provided confidence that the data was not corrupted.

- The TNC would send acknowledgements when data was received correctly an
perform retries when it doesn’t get thru the first time.

- Data was not limited to printable characters. You can send files such as JPEG
images.

7

American ham radio operators had a disadvantage. The FCC did not allow the ASCII
code to be used over ham radio until 1980. Special permission was required to
perform the same type of experimentation as the Canadians.

The Vancover Amateur Digital Communications Group made their design available as
a bare printed circuit board. It was necessary to gather up all the other parts which
discouraged most.

In 1983, Tucson Amateur Packet Radio (pronounced tapper) introduced their TNC-1
kit which made it a lot easier.

- All parts including modem and power supply.
- Documentation about 2 inches thick.
- $350 Did not include case.

This was later available as the Heathkit HD-4040.

They threw a lot of hardware at the problem. About 27 integrated circuits.

The TNC-2 came along a couple years later. It was smaller and cheaper. MFJ and

8

others produced products based on this design. For a while , everyone was churning
out new TNC products.

8

The command line interface was designed for a person sitting at a dumb terminal
talking to another person.

Soon people got bored with talking person to person and started building applications
such as bulletin board systems. This interface not well suited for communication with
a computer application.

Characters going TO the TNC:
- Commands.
- Data for another connected station.

Characters coming FROM the TNC:
- Monitoring of activity.
- Response to commands.
- Text from other connected station.
- Status messages – vendor specific.
- Echoing of what was typed.

9

This lead to the “KISS” interface, in 1986, which was better suited for talking to a
computer application. This was meant only as a temporary stop gap measure until
something better could be devised. We are still using it more than 30 years later.

Most of the protocol handling is moved to the computer. The TNC simply adds wraps
the packet contents in HDLC.

Full featured TNCs have a KISS mode which allows an application to bypass the usual
user interface and get closer to what actually goes over the radio.

The protocol is too simple and doesn’t provide any information about the TNC status
or what is happening on the radio channel. For example an application might send a
dozen packets to be transmitted. There is no way for the application to know
whether they have been transmitted, are still waiting on a busy channel, or whether
some of them were discarded because the TNC ran out of memory. Different people
started filling in the gaps with different incompatible schemes.

10

This is not a general Introduction to APRS but I would like to emphasize it is far more
tracking cars or a house saying, “I’m still where I was 2 minutes ago. I’m still where I
was 2 minutes ago. I’m still where I was 2 minutes ago.”

APRS has a lot of potential and we are using only a small part of it.

Position and Object reports are similar there is an important distinction.

A “Position” report is information about the sender. It refers to the station in the
AX.25 source address.

An “Object” report is information about something else. The Object report format
has a separate field for the Object name which would be different than that sender
of the packet.

Many hams have home weather stations and share information over APRS. This
allows information to be aggregated without use of the Internet.

Telemetry …

Etc…..

11

APRS of Things
https://microhams.blob.core.windows.net/content/2018/03/MHDC2018-K7UDR.pdf

11

15 or 20 years ago this was the accepted way of doing things.

You would run some sort of application on your computer and have a special box
between your computer and radio.

12

If you are already using a computer, there is no need for a separate TNC.

The TNC functionality can be handled by software running on the PC.

Cheaper, better results. Easy upgrades – software update instead of buying new
EPROMs.

There are a lot of “Introduction to APRS” articles – mostly 10 to 15 years old - that say
you need to spend $$$ for a device in the middle. This hasn’t been true for a long
time.

13

The software TNC approach is very flexible. You are no longer constrained by that
serial port cable and a single radio interface.

You could have a software TNC running on a Raspberry Pi in your “shack” near your
radios. It can run digital repeaters on multiple frequencies at the same time. It can
be a router between different radio networks with user defined filters to limit what is
allowed through.

At the same time, it can be an Internet Gateway, connecting your local radio network
to others around the world over the Internet.

Multiple applications can be using it in place of a traditional TNC at the same time.

On a nice summer day, you could be relaxing next to the swimming pool with your
laptop or tablet instead of being in your basement. The application you are running
connects to the TNC software using WiFi or BlueTooth.

14

Adlib …

Runs on these operating systems…

Provides these functions without additional applications…

Dire Wolf can be used with any application designed for use with an old fashioned
TNC.

APRSIS32, YAAC, and Xastir are popular APRS applications which display icons on a
map.

SARTrack looks similar but was specifically designed for Search and Rescue.

(Note: It’s time to stop mentioning UI-View32. The author became a silent key in
2004 and left instructions to destroy the source code. It is frozen at that point and
I’ve seen mention that it has problems with anything newer than Windows XP.)

APRS-TW is specifically for watching telemetry. You can do things such as setting
alarms when values cross thresholds.

UISS is for contacting the International Space Station.

15

Linux AX25 is a collection of applications which allow you to run TCP/IP over ham
radio.

WinLink Express (formerly RMS Express) and Outpost PM are messaging applications
used by emergency communications groups.

Linpac is short for Linux Packet.

15

What should it be called?
Something like “soft TNC” would too generic and boring.
Can we come up with some sort of acronym that incorporates words that describe it?
I started juggling words around and came up with this.

16

Here is a block diagram of the Dire Wolf functionality.

Don’t try to read all the little boxes. We will be visiting each of them separately.

The key point here is the radio is at the bottom layer.

Above that are modems and other ways of sending information over the radio.

Above that are different ways to produce or consume data going over the radio.

Finally along the top, we have other external interfaces such as GPS receivers,
weather stations, the Internet, and other local applications.

17

Starting at the bottom of the block diagram, this is what connects to your radio.

The interface to the radio is just audio in, audio out, and some sort of PTT control.

All of these devices look much different but they all do the same thing.

The early computers did not have audio built into the motherboard so you needed a
separate “sound card” as shown in the upper left.

Back in the old days, it was common to use one of the control lines, from the serial
port, to turn on the transmitter.

Below that is a USB audio adapter that runs in the 5 to 10 dollar range. It has audio
output for headphones and audio input for a microphone. What do we do for the
push-to-talk signal. If you look closely you will see a couple wires sticking out. The
most common chips have extra general purpose digital I/O pins available. These are
sometimes used for pushbuttons or LED indicators. We can use one of the pins for
our push-to-talk control.

This is a very tidy solution because it can all be done with a single USB port. There
are at least 3 commercial products available that use this approach and many
homebrew plans.

18

The SignaLink USB is an overgrown version of the USB audio adapter. It also has
audio isolation transformers and a relay to break up the ground between the radio
and computer. It also a VOX circuit that turns on the transmitter when transmit
audio is present.

Finally, in the lower right we have a Raspberry Pi with the UDRC audio board on top.
In this case we use Raspberry Pi General Purpose I/O pins for the PTT control.

The round 6 pin connector matches the “data” connector found on many
transceivers.

 -- stop here --

DMK URI http://www.dmkeng.com/URI_Order_Page.htm
RB-USB RIM http://www.repeater-builder.com/products/usb-rim-
lite.html
RA-35
 http://www.masterscommunications.com/products/radio-
adapter/ra35.html

There are several similar homebrew projects:

http://www.qsl.net/kb9mwr/projects/voip/usbfob-119.pdf
http://rtpdir.weebly.com/uploads/1/6/8/7/1687703/usbfob.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio

Don’t read out loud:
Why the block diagram on the right? My thinking was that it shows where we have
zoomed in on the larger picture. Is this helpful or distracting?

18

http://www.dmkeng.com/URI_Order_Page.htm
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.masterscommunications.com/products/radio-adapter/ra35.html
http://www.masterscommunications.com/products/radio-adapter/ra35.html
http://www.masterscommunications.com/products/radio-adapter/ra35.html
http://www.qsl.net/kb9mwr/projects/voip/usbfob-119.pdf
http://www.qsl.net/kb9mwr/projects/voip/usbfob-119.pdf
http://www.qsl.net/kb9mwr/projects/voip/usbfob-119.pdf
http://rtpdir.weebly.com/uploads/1/6/8/7/1687703/usbfob.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio
https://irongarment.wordpress.com/2011/03/29/cm108-compatible-chips-with-gpio

For about $20 you can get a little gadget that receives from 500 kHz up to 1.7 GHz.
Just add a computer, and the right software, and you have a very versatile receiver.

Dire Wolf can take audio from various SDR applications in different ways.

A simple FM receiver, with no graphical user interface, called rtl_fm, produces audio
thru stdout. In this case we can pipe it in thru stdin represented by the dash at the
end of the line.

gqrx has a provision to send digital audio by UDP. Dire Wolf can be configured to
listen for audio over a UDP port.

The last time I looked at SDR#, it had no special provision for sending received audio
into another application for processing. In this case, we can use a virtual audio cable
to route audio from one application into another.

19

It is interesting to note that the he AX.25 protocol standard says absolutely nothing
about modems.

According to one of the early Canadian packet radio pioneers, they happened to get a
big pile of old Bell 202 modems for 75 cents each. It was a quick and dirty
TEMPORARY way to get something up and running.

Everyone kept saying it would soon be replaced by something better but here we are,
40 years later, and it is still the most commonly used.

20

Around 1988 (30 years ago, as I’m writing this) pioneers such as K9NG and G3RUH
came up with hardware solutions to send data at 9600 bits per second.

I wouldn’t call them “modems” because they just shoved the digital signal into the
transmitter resulting in Frequency Shift Keying of the RF signal.

This will not work with the microphone and speaker connectors because the audio
passband is too narrow and not flat.

It is necessary to bypass the audio filtering to get wider flatter audio passband. The
older literature referred to making a connection directly to the discriminator. In more
recent times, there is often a connector available for external modems.

The big 3 ham radio manufacturers (Kenwood, Icom, Yaesu) standardized on the
same 6 pin mini DIN connector. Alinco has the same functionality but a different
connector.

The 9600 pin comes right from the discriminator without de-emphasis. This has
enough bandwitdh for 9600 baud data.

The “data in” pin bypasses the pre-emphasis and goes right into the modulator.

21

Dire Wolf also has the ability to encode and decode DTMF, commonly known as
“Touch Tones.”

In the receive direction, tone sequences terminated by the # key are converted to the
same internal format as normal packets.

The information part of each APRS packet begins with a character called the data type
indicator. In this case we set it to lower case “t” to indicate DTMF tone sequence.

In the transmit direction, a destination field of “DTMF” means that touch tones
should be sent instead of the normal AX.25 frame.

Otherwise these are handled like any other packets. Upper level applications can
process them and create them.

22

Dozens of free speech synthesizers are available. Just feed in text and out comes
spoken words.

When the destination address contains “SPEECH” the information is not sent as a
normal packet.

Instead, a user-defined script is invoked. This can pass the text along to the speech
synthesizer of choice.

23

Similarly, if the destination address is “MORSE” the information part is sent as Morse
Code.

24

Beacons are automatic periodic transmissions usually containing a location and an
icon for something like a house or a car.

When the location comes from a GPS receiver, we have a tracker.

Beacons can have variable content. In this case, a user defined script is run to
generate the information part. This could be weather information or anything else
you want to put there.

25

A collection of scripts and examples that can be used as building blocks for
constructing your own customized solutions for your particular needs.

Beacon invokes user-defined script to generate packet content.

Includes an example of connecting an A/D converter to a Raspberry Pi and
transmitting the measured voltage as APRS Telemetry.

26

Very few hams have portable equipment for APRS but nearly everyone has a
handheld radio that can send DTMF tones.

APRStt allows a user, equipped with only DTMF (commonly known as Touch Tone)
generation capability, to enter information into the global APRS data network.

It’s been around since the turn of the century but never caught on.

Earlier implementations required specialized hardware and were not easily adaptable
to new situations.

27

Suppose the organizers of a canoe race wanted to keep track of the locations of the
participants but didn’t have a budget to put a GPS APRS tracker on each canoe.

Instead they have observers at various points along the way.

If the observer at checkpoint 3 wanted to report that canoe 12 was passing by, she
would turn on her transmitter and send the tones 3 1 2 #.

The APRStt gateway would interpret the first digit as a location.

The other two digits would be an object number. This object might be a race
participant, staff member, or piece of equipment.

The gateway would confirm receipt of the report by responding with synthesized
speech.

It would also send an APRS Object Report, typically on a different radio channel.

28

A digital repeater serves the same purpose as a voice repeater. It allows
communication between stations that can’t hear each other directly.

A voice repeater receives on one frequency and simultaneously retransmits on a
different frequency.

A digital repeater generally operates on a single frequency. A packet is stored in
memory and then retransmitted when the channel is clear. There is a provision for
the maximum number of repeater hops. This is decremented each time so a packet
does not go bouncing back and forth forever.

29

IGate stations allow communication between disjoint radio networks by allowing
some content to flow between them over the Internet.

IGate stations also allow someone without a radio, or outside of your local area, to
view APRS activity at http://aprs.fi or http://findu.com or with other applications.

Information can also be relayed from the Internet Servers (IS), through your station,
on to the radio channel.

30

http://aprs.fi/
http://findu.com/

Properly configured IGate stations offer two way communication.

RF to Internet AND Internet to RF.

Here is an example of how they can be used to send an APRS message to someone on
the other side of the world.

Ham 1 sends an APRS message addressed to Ham 2.

On the local radio network, this might be repeated by a couple digital repeaters
before being picked up by an Internet Gateway station.

The gateway station A passes the message along to the global network of servers.

The servers check their database for recent activity of Ham 2 and which IGate
stations reported that information.

The servers forward the message to those IGate stations. The message could then
be repeated by digital repeaters along the way.

When Ham 2 receives the message, an automatic acknowledgement goes back to the

31

sender in a similar way.

The messaging application, used by Ham 1, reports that the message was received.
If there is no response for a while, multiple retries are made until it gives up and
reports failure.

Some people set up receive only IGate stations which go from RF to the Internet but
not the other way. This breaks the messaging system because there might not be
another nearby return path for a reply.

31

Besides operating standalone, Dire Wolf can also be used as a virtual TNC by many
applications that were written for use with the old TNCs.

We are no longer restricted to an RS-232 signal cable. We can now use TCP/IP, WiFi,
and Ethernet. Many applications can access the virtual TNC at the same time.

KISS, the “temporary” stop gap measure from 30 years ago is still going strong.

There is also a newer “AGW” protocol (from AGWPE) which allows applications to
access more intelligence in the TNC.

For example, the AX.25 link layer for connected mode operation. No sense in each
application having to re-invent this.

32

The most technically challenging part of this was building a the 1200 baud
demodulator.

I have no academic or professional background in digital signal processing so I had no
clue on how to go about doing this.

It involved a lot of reading and experimenting and relentless tweaking until it worked
better.

33

The AX.25 protocol standard says absolutely nothing about the modem to be used.

As mentioned earlier, the early experimenters used the Bell 202 standard because
they happened to acquire a pile of modems dirt cheap. They used those to get
started until something better could be developed.

Here we are, 40 years later still using the same thing.

Data is sent at 1200 bits per second using two different audio frequencies: 1200 &
2200 Hz, often called “mark” and “space,” to represent the logic 1 and 0 values. This
is called audio frequency shift keying (AFSK).

A demodulator needs to listen for those two tones and decide which one is present.

34

This is one way we can implement a demodulator for AFSK. We start off with a
bandpass filter for each of the audio frequencies. In the old days, you might use an
inductor and capacitor. Later we progressed to active filters with op amps. Today it
can be done in software.

What we are interested in is the amplitude of the tone, not the sine wave. In the old
days, this would be a full wave rectifier. The software equivalent is taking the
absolute value so the negative peaks become positive.

A low pass filter allows the lower speed data through while removing the higher
frequency ripple and noise.
Finally, we have a comparator to decide which tone is stronger and the result is logic
1 or 0.

This goes to an HLDC decoder that looks for patterns in the bit stream and spits out
groups called “frames.”

35

I was thrilled when I was able to decode ideal signals.

It soon turned into disappointment when I tried it on real world signals and it did not
work very well comparted to a TNC from the previous Century.

Why? How were the real world signals different than the ideal signals?

36

WA8LMF has provided the ham community with a wonderful resource for evaluating
the performance of TNCs with real world signals.

He drove around Los Angeles, during rush hour gathering a wide variety of APRS
signals. It was wonderful, under deviation, over deviation, people stomping on each
other, even some really strange looking signals that make you wonder where they
came from.

(Note: Look for something like “A closer look at the TNC Test CD” in the
documentation directory.)

This is an important point. Track 1 has the wide flat audio taken from the
discriminator before any de-emphasis.

Track 2 has low pass filtering to produce a signal more like what would typically come
out of the speaker.

This has become the de facto standard for measuring TNC decode performance.

37

Many people have reported number of frames decoded from the TNC Test CD.
I have gathered many of the reports together here.

Remember that these numbers were gathered by different people, different times,
under different conditions, so don’t take them too seriously.

[Original sources are cited in one of the Dire Wolf documents.]

The software modems are in yellow. They include the worst and the best.

If we make a little graph, an interesting pattern becomes clearer.

38

The early TNCs with modem chips come in at the 700 to high 900 range.

The early “soundcard modem” software did not work very well, giving this approach a
bad reputation.

You will find outdated articles claiming that you need to buy special hardware for
acceptable results. Was true at one time but not anymore.

In more recent times, the top two are free software running on general purpose
computers.

39

This is a big part of our problem.

When using modems, we would like the audio going into the transmitter to come out
of the receiver with a minimum of distortion.

As we saw earlier, some transceivers have special sockets to bypass the audio filtering
when using external modems.

VHF FM transceivers are designed for voice and do bad things with signals from
modems.

On transmit, we have pre-emphasis. This means the higher audio frequencies are
increased in amplitude.

On receive, the opposite happens. De-emphasis uses a low pass filter to decrease
the amplitude of higher frequencies.

In an ideal world, they would cancel out but we often end up with an audio passband
which is not flat.

It might OK for voice but bad for digital data. The distortion makes it more difficult
for modems to demodulate signals properly.

40

The situation is worse when we have a mismatch between the transmitter and
receiver.

If you have no pre-emphasis on the transmitter and a low pass filter on the receiver,
you end up with a situation like this.

This is an actual signal captured on the air. The higher audio tone is considerably
weaker than the lower frequency.

41

This is the opposite situation.

The transmitter has pre-emphasis and boosts the higher audio frequency.

On the receiving end there is no de-emphasis. As a result, the higher audio tone is
stronger.

42

With either mismatch case, the demodulator has a difficult time rapidly deciding
which tone is stronger and it is less reliable.

My first attempt at improvement was to add automatic gain control so both would
get normalized to the same range.

Results were better but AGC takes time to adjust and can get thrown off by bursts of
noise.

43

A brute force approach would be to use multiple demodulators in parallel.

Different filters in front of them would compensate for the various cases of the two
tones being out of balance.

Duplicates, arriving at nearly the same time, would be removed.

The demodulator is compute intensive using hundreds of multiplies and adds for
every audio sample. Running three, like this, would triple the CPU power demand.

44

I used a variation on the theme where differing amounts of gain are applied to one of
the amplitudes after the computationally intensive part.

In this case, one of the outputs worked better for Track 1 and the other worked
better for Track 2.

45

What would be the best gains to boost the higher frequency?

I did a little experiment, using various gains, and counting the number of packets
decoded.

For track 1, we find the optimal gain is about minus 1.5 dB.

For track 2, about 7.5 is the best.

46

On the right side we have an indication of which decoders were successful. The
vertical bar means an error free frame was received. An underscore means failure.

In the first example, a frame from Track 1 does better with the lower gains on the
higher frequency.

In the second example, a frame, from Track 2 does better with higher gains.

The best performing demodulators all use some variation on this theme where
multiple parallel decoders are used to compensate for the mismatched amplitudes of
the two tones.

47

There is an old proverb, “One bad apple spoils the barrel,” which applies to AX.25
frames used for APRS and traditional packet radio.

If one bit gets corrupted, the frame check sequence is wrong and the frame is
discarded.

In the traditional connected mode packet, the TNC will retry several times. With
APRS, it’s just gone.

48

For single bit errors, we can try to invert each of the bits – one at a time! – and
recalculate the FCS. My experimentation found this recovered a lot of packets that
would normally be discarded.

49

There is one little problem with flipping various bits trying to find a valid FCS. If we
invert one of the bits that was not corrupted we sometimes still get a good CRC.
Callsigns contain punctuation characters. The information part has unprintable
characters.

The reason is that –

The 16 bit FCS has 65,536 different possible values. Even if totally random data goes
into the checking process, you will end up with a valid FCS one out of every 65,536
times.

When you try hundreds of bit flipping combinations and process lots of packets, a fair
number will just happen to get past the FCS check and produce bad data.

50

After applying this extra step of sanity checking, no bad data was visually observed
for the single bit fixing case. In very large sample sizes, there were a few cases of bad
data getting thru when flipping more than one adjacent bit. Obvious errors are fairly
common when flipping two non-adjacent bits.

51

52

Ignore the advice from all those Packet Radio / APRS tutorials written 15 or 20 years
ago.

They will tell you need to spend a substantial amount of money on special hardware.

If software TNCs are mentioned at all, they are dismissed as having poor
performance.

Nowadays the newer software TNCs have left the 1980’s style hardware behind in the
dust. They have better performance, more features, and lower cost.

53

54

